

# National Center of Mapping and Remote Sensing

Remote sensing techniques

for

Crop Mapping



# APPLICATION OF REMOTE SENSING FOR AGRICULTURE

#### LAND USE

crop (different legend)

forest

urban

water...

#### **STATISTICS**

Myriam HAFFANI

Sinan BACHA

Wafa TALHAOUI

Nabil SGHAIER

Moncef BEN MOUSSA



# Monitoring of Cereal and Production Forecasting of Wheat and Barley by Remote Sensing

- In partnership with the Ministry of Agriculture
- implemented over a period of three years,
- managed by a technical committee



- Assessment of Area and cereal production (wheat and barley)
- 2. Improve methods of existing statistical processes
- Support decision-making processes (data collection and processing, dissemination).

### Long term objective

Design and implementation of an operational system of monitoring and forecasting cereal crops



## Project phases

- 1. 2009-2010: Data collection and preparation
- 2010-2011: implementation of the methodology and model parameters
- 3. 2011-2012: operational forecasting system

### **Project Components**

- 1. area assessment
- 2. yield evaluation
- 3. Crop Monitoring









10 provinces dominated by cereal crop

NORTH: Bizerte, Manouba, Béja, Jendouba, Kef, Siliana, Zaghouan

CENTER: Kairouan, Sidi Bouzid et Kasserine









The combination of low reflectance in the visible and high reflectance in the near infrared is specific to vegetation:

$$NDVI = (NIR-R) / (NIR+R)$$

The NDVI indicates the density and condition of green vegetation, it varies from 0.2 for cereals (for a little ground cover) to 0.8 (grain in good vegetative state, covering completely the ground)



## Three approaches

- 1. Classification method using SPOT5 images
- 2. Statistical model (Mars Approach, action IV).
- 3. Statistical method using SPOT VEGETATION images



# Classification method using SPOT images 5





## MARS's approach







## (Monitoring Agriculture with Remote Sensing)

- Stratification map
- Cereal crop map
- The SPOT satellite track



#### 11 sites





## MARS's approach

#### In site

$$\Delta S = \left(S_n - S_{n-1}\right) / S_{n-1}$$



In province

$$S_n = (\Delta S + 1) \times S_{n-1}$$

Estimated area in the site year (n-1)



Estimated area in the site year (n)





Estimated area in the province (MA) year (n-1)



Estimated area in province year (n)



# Statistical method using SPOT VGT images





## Cereal yield estimation

### Statistical approach: Linear regression

$$Yield = \alpha + \beta_1.NDVI + \varepsilon$$

 $eta_{\scriptscriptstyle 1}$  : regression coefficient

lpha : Origin value

 $\mathcal{E}$ : Error

NDVI : Normalised Diffrence Vegetation Index

YIELD : Yields of Durum Weat, Bread Weat and Barly

Various parameters for each cereal type and province



### **CEREAL AREAS ASSESSMENT**



# Approach 1: NDVI threshold per scene SPOT 5 & per date





## **Approach 2: MARS's Method**





# Approach 3: NDVI SPOT VEGETATION





The cereal production estimation is the result of multiplying the cereal yield of each cereal speculation by the study area surface

| National production 2011 |      |      |            |
|--------------------------|------|------|------------|
| Millions of Qx           |      |      |            |
|                          | MA   | CNCT | Difference |
| Durum Wheat              | 13,2 | 11,6 | - 12,1     |
| Soft Wheat               | 2,8  | 2,5  | - 10,7     |
| Barley                   | 6,8  | 5,0  | -26,5      |
| Total                    | 22,8 | 19,1 | -16,2      |



### Conclusion

At the end of 1<sup>st</sup> and 2<sup>nd</sup> phases of the project, the following actions were carried out:

- Data collection and processing
- Implementation of a methodology
- Cereal crop monitoring 2009-2010 and 2010-2011
- Edition of a bulletin of cereal crop monitoring 2011 and 2012
- Cereal area assessed with three different approaches
- Cereal yield estimation

Good results obtained



### **FORWARD**

#### But there is need to

- Continue to improve the methodology
- Increase its efficiency by using an adequate sampling rate and/or by use of another sampling protocol system
- Implement this operational system for forecasting and monitoring cereal crop

#### LEVEL OF IMAGE PROCESSING & RS

#### Way Forward:

- Project continuation
- Extend to all of types of crop
- Understand the techniques based on LAI & FPAR
- Perform knowledge and training in modeling and how to get the images in LAI, FPAR, dry matter, Phenology, ETP ...



### Conclusion

#### Actions in the frame of the project :

- Training on C++ and IDL programming (automated processing chains, MVC, algorithms for cloud processing...)
- Training on modeling and image collection in LAI, FPAR, dry matter, phenology, ETP, etc.
- Training on atmospheric corrections

## AT LEVEL OF AGRICULTURE MANGEMENT WATER USE, information crop&irrigation

- Irrigated field (public "known", private??)
- Crop mapping.



### Conclusion

Axe irrigation for LDAS Project: Same end-users of the agriculture ministry additional DG rural engineering and water exploitation

#### End-users' needs?

- information about different types of crop (spatialisation, type, state...)
   adapted to tunisian landscape specifities
- Information about the stressed crop and how and when use of water resource (quantity, quality)
- cropmapping



# THANK YOU FOR YOUR ATTENTION